1000(t)=-16t^2+1700

Simple and best practice solution for 1000(t)=-16t^2+1700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1000(t)=-16t^2+1700 equation:



1000(t)=-16t^2+1700
We move all terms to the left:
1000(t)-(-16t^2+1700)=0
We get rid of parentheses
16t^2+1000t-1700=0
a = 16; b = 1000; c = -1700;
Δ = b2-4ac
Δ = 10002-4·16·(-1700)
Δ = 1108800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1108800}=\sqrt{14400*77}=\sqrt{14400}*\sqrt{77}=120\sqrt{77}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1000)-120\sqrt{77}}{2*16}=\frac{-1000-120\sqrt{77}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1000)+120\sqrt{77}}{2*16}=\frac{-1000+120\sqrt{77}}{32} $

See similar equations:

| 18x-10=7-5x | | 5f+f+4f-7=29+6f | | 15c+6=5c+66 | | 16x=110 | | 7.5/90=12/x | | F(x)=-3x^2-7x-2 | | x^2+40x=2304 | | F(x)=-3x²-7x-2 | | 8x-2=70. | | 3(2a-1)=-7a+10 | | 30+4x=6-10x | | x^2=841^-1 | | 4/5(5p-20)+6=19 | | x^2=841-1 | | 12-(6x-8)+2=10 | | x–23=51 | | -x²-3x+10=0 | | -2y+3-2+y=-3y+15* | | 5.6x=19.6 | | (3x+7)^2=6x-14 | | –5b+72=–2b | | x=2+12(2/51) | | 17x-6=67 | | 12x+14(2x-3)=45-3(x+3)+4x | | 6(2+12y)-21y=10 | | x^2-3=48 | | 2(3x-9)=-36 | | ?x16=118 | | 2(x-1+4=-2x+2 | | 4x+3(x+2)=15 | | 7a+34=3-(3a+27) | | 142-90=x |

Equations solver categories